(4) Shihlin

SF-020-7.5K/5.5K-G~55K/45K-G SF-040-7.5K/5.5K-G~355K/315K-c

Thank you for ohoosing Shihlin SF-G Series AC Dive.
The intsuction will decsibe onthe use and point for attention of products. Before installing, please be sure to carefully read the
Installation Instructions, so that the inverter can be used in proper and safe way.
The instruction will describe on the ese and points for attention of products. Beff
Intstalation Insturctions, so that the inverter can be used in proper and saie way.

1) Safety Instructions
1station

Cation: Inoorect handling may cause hazardous conditions, resulting in medium or sighh tinuur, or may cause only material damage

Voltage which is less than 24 VDC between + P and -

\checkmark Do not thange the cooling tan while power is oN. Lt tis sangenerous to to hange the cooling tan while power is on.

high votage.
While ower is
burn. The cables must be connected to the correct terninals. Othemise burst, damage, etc. may occul

Inverer must be insalled on a nonfamm
\checkmark If the inverter has become fauty, the inverter power must be suitched OFF. A continuous fow of flage current may cause a fire
Do not connect a resistor diriectly the DC terminals + PP and $-\mathbb{N}$. Doing so could cause a fire.
2) Descrition of Product Model Number

$\xrightarrow{\text { ST }}-\stackrel{040}{L}$			
Series category	Voltage level	Capacity	Others
SF series	$-040: 400 \mathrm{~V}$ three-phase $-020: 200 \mathrm{~V}$ three-phase	${ }^{7.5 \mathrm{KW} / 5.5 \mathrm{KW}}$	None : General mode $-{ }^{* *}$: Customer motor or dedicated motor or region difference
3) Installation Environment			
Ambient temperature	$-10 \sim+40^{\circ} \mathrm{C}$ (non-freezing). Below 90\%Rh (non-condensing).		
Ambient humidity			
Storage temperature			
Surrounding enviromment	Indoor, no corrosiv gas no flammable gas, no flammable powder.		
Altiude			
Vibration	Altulud below 1000 meiers		
Grade of protection	${ }_{1220}$		
The degree of polution			

4) Installation and Wiring
>Please comply with installation conditions shown below to ensure enough ventilation space and wiring space for inverter cooling

Notel: When mounting inverters of dififerent sizes in paralele, please aign the
clearance above each invetere to instal, which is easy to change the
cooling ter
cooling tan.
Note2: When it is in

5) Terminal Connection Diagrams

Note $1:$ Do not tet the PC terminal and sD Derminal with short tircuil
Note e : D D reactor can be selected between + P and P1, fitit is not used, can take directily short circuit
Note 3 : When FMAM output terninals are selected for $F M$ M function, reference grounding is $S D$.
TreC, D, E, F, braking unitis setween the
$(++P)$ and $(-N)$.

Invererer model		$\begin{aligned} & \text { Tightening } \\ & \text { torque } \\ & \text { (Kgf.cm) } \end{aligned}$			
SF-020.5.5K	m5	${ }^{35}$	8		
SF.020-7.5k5.5k-6			14		
SF-040-5.5K			6		
SF-000-7.5/51.5k-6			6		
SF-000-11 K7.5.5.6			8		
SF-00-15k/11k-6			14		
SF-020-11 K5.5.5-6	м6	44	25		
SF-020-15K/11k-6			35		
SF-020-18.5K1 15 k -6			50		
SF-020.22k18.5k-6			60		
SF-020.30k 22 k -6			95		
SF-090-1.8.5K/15k-6			25		
SF-090.22k18.5k-6			25		
SF-000.30k 22 k - G	m8	61.2	${ }^{35}$		
SF-000-3\%\%з30-6			60		
SF-040-45K37\%.6			60		
SF-020.37k30\%-6	м10	102	120		
SF-020.45K37\%K. 6			${ }^{120}$		
SF-02-55k44k-6			185		
SF-040.55k45k-6			${ }_{9}$		
SF-000-75k 55 sk -6			${ }^{120}$		
SF-00.900K75k-G			120		
			185		
SF-090-132K110-6			$95 \times 2 \mathrm{P}$		
SF-090-1606/132-6			240		
SF-090.315kR280\%-6			${ }_{\text {9544P }}$		
SF-000:3050\%315k-6			${ }_{9544}$		
SF-090-185kN160k-6	M12	${ }^{142}$	$120 \times 2 P$		
SF-090-20061185k-6			$120 \times 2 \mathrm{P}$		
SF-090.-250K220K-6			$150 \times 2 \mathrm{P}$		
SF-000.2806K250k-6			$120 \times 2 \mathrm{P}$		
> Arrangement of main circuit terminal 1. Frame A					
$(\oplus)(\oplus)(9)(9)(9)(9)(9)(9)(9)$					

2. Frame B

3. Frame C

$\underbrace{\text { motor }}_{\text {Power input }}$
4. Frame D/E/F

5. Frame G

OQ ©
6. Frame H

7) Control Terminal
$>$ Arrangement of control termina

> Control terminal description			
Terminal type	Terminal name	There are totally 10 multi-function control terminals which can switch mode of SINK/SOURCE.	Terminal specifications
Switch signalinput	sTF		
	STR		
	RM		
	${ }_{\text {RHU }}^{\text {R }}$		
	$\stackrel{\text { AU }}{\text { RT }}$		
	MRS		
	RES		
	sD	Com STR, RL, RM, RH, AU, RT, MRS, RES, FM	-
	PC	In the mode of source, provide common power	Output voltage : $24 \mathrm{VDC}+20 \%$
Analog signalinput	10	There is 5 S power insidid the terminals.	Maximum curent:10mA
	2	Voltage is $0 \sim 5 \mathrm{v}$ or $0 \sim 10 \mathrm{v}$ input point, to set the target frequency	
	4	Curent is $4-20 \mathrm{~mA}$ input point, to set the target	
		frequency.	
	5	Common referernce of $10,2,4$, and AM terminal	-
Relay output	A	Multi-inncioio relay utiput teminals.	Contact ability VCC30VVAC230V-. 3 Sa
	B	${ }^{\text {A.C }}$ is ite nomaly open contact, B.C is ith	
Open collector outut	su	Uuti-iunction open collector output terminal	
	RUN		Maximum voltage: 48VDC Maximum current:50mA
	FUU10X		
	SE	The reference of poen collectoro output	
Analog Pulse ignal output	AMFM	Multi-function analog signal output terminal	Output voltage:0~10VDC Maximum current:3mA ; Maximum load: 500Ω
Communication termina	AGNDIB	Connector of inverter and RS-485 communication interface	Highest rate:19200bps

[^0]

＞Wiring method

 Control terminal screw：M3```
- Power supply connection
```

Recommended connecting the wire using insulation covering U terminal
U terminal is applied to the wire, which cross-sectional area is $0.3 \sim 0.75 \mathrm{~mm}^{2}$, suggesting that d 1 is 3.2 mm , d2 is 6.2 mm or less
$\square \square$ 局
Note 1: Please Use a smal cross head screw driver.
Note $2:$ :Tighte
malunction
> Wiring Precautions

- After wiring, wire offfuts must not be left in the inverter.

Wire officuts can cause an alarm，failure or malfunction．Always keep the inverter clean．
When drilling mounting holes in an enclosure etc．，please take caution not to allow chips powder to enter the inverter．
－To prevent a malfunction due to noise，keep the signal cables $10 \mathrm{~cm}(3.94$ inches）or more away from the power cables． Also，separate the main circuit cables at the input side from the main circuit cables at the output side．

8）Appearance and Dimensions
＞Frame AB

＞Frame C


＞Frame D／E／F


国国家：



| Parameter number | Name | Setting range | Default value | User setting value |
| :---: | :---: | :---: | :---: | :---: |
| P.53 | Communication check time inteval | 0-999.85, 99999 |  |  |
| ${ }_{\text {P. } .54}^{\text {P. } 55}$ | FMAM | ${ }_{\text {O-5 }}^{0-40 \mathrm{OHz}}$ |  |  |
| P. 56 | Current monitoring efeference | 0-550AA5000A (Note 5) | ${ }^{\text {Raled outur }}$ |  |
| p.57 | Restart coasing time | 0-305, 99999 | ${ }_{9} 99999$ |  |
| P. 58 | Restart custion time | $0-60 \mathrm{~s}$ | ${ }^{55(7.55 W \mathrm{EF})}$ |  |
| P. 58 | Restart custion time |  |  |  |
| P. 60P. 61 | ${ }_{\text {Resene }}^{\text {Resene }}$ (ignal ifler constant) | $\stackrel{-}{0-2047}$ | 31 |  |
|  | Remote setting function selection | 0: Noremote setting tuction. | 0 |  |
|  |  | setup storage is savaliale. |  |  |
|  |  |  |  |  |
|  |  | 3: Remote setting function, frequency setup storage is not available, the remote setting frequency is cleared |  |  |
|  | 2 ero curent detection level | byst | 5\% |  |
| P. 63 | Zero current doteection time | 0.05-17.999999 | ${ }^{0.55}$ |  |
| P. 64 | Retry selection |  | 0 |  |
| P. 65 |  | O: Reily is invid. |  |  |
|  |  |  |  |  |
|  |  | (2. Over-curent occuss, the AC Dive will |  |  |
|  |  | 3: OVer-Volage or overc-curant ocurrs, ithe AC Drive will perform the retry |  |  |
|  |  | function. ${ }^{\text {a }}$ |  |  |
| P. 66 | Stal prevention operation reaccion | $0-400 \mathrm{~Hz}$ | ${ }^{\text {50Hzz60Hz ( Note }}$ |  |
| P. 67 | Number of tetiese satalam occurrence | $0-10$ | 0 |  |
|  | Retry wating time | 0.360 s | 1 s |  |
| P. P \% | Special regenerative brake outy | $0.60 \%$ | 0 |  |
| P. 71 | loting braking and linear braking | 0: ilding braking | 1 |  |
| P. 72 | Carier frequency | 1: DC C braking |  |  |
|  |  | Frame AB/C: 0.7 -14.5KHz | ${ }^{\text {Frame ABCIC: }}$ |  |
|  |  | Frame DE: 0.7 .-9KHz | Frame DIE: 4KHz |  |
|  |  | $\frac{\text { Frame }}{\text { FGG: } 0.7 \text { orekhz }}$ |  |  |
| P.73 | Voltage Signal selection | $0:$ The valid range of signal sampling | 0 |  |
|  |  |  |  |  |
| P. 74 | FUU10X output terminal selection | ${ }_{\text {samping (leminal } 2 \text {-5) } \text { is o-10V }}$ | 0 |  |
| P.75 | Stop or reset function selection | 0: Press stop butto and stop the |  |  |
|  |  | 1: Preass sTop buton and stop the | 1 |  |
|  | ReseneParameters wite protection | operation in al mode. | -- |  |
| P. 77 |  | 0: Parameters can be written only when | - |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | 4.Paramelers cannot be witten when in |  |  |
| P. 78 | Forward/reverse rotation preventionselection | 0:Formard foration and reverse rolation | 0 |  |
|  |  | 1: Reverese rotaito is prohibited Press |  |  |
|  |  | the reverse reference to decelerate |  |  |
|  |  | 2: Foward foation is, probibited Press |  |  |
| P. 79 |  |  | 0 |  |
|  | Operation mode selection | mode are inerchangeable |  |  |
|  |  |  |  |  |
|  |  | 2: "External mode" only |  |  |
|  |  | 4: "Combined mode 1" |  |  |
|  |  |  |  |  |
|  |  | ${ }_{8}^{8}{ }^{\text {E }}$ |  |  |
| p. 80 | Multi-function terminal RL function selection |  | 2 |  |
|  |  |  |  |  |
|  |  | 4 4:RH(Multispeed) |  |  |
|  |  | 6:AOH |  |  |
|  |  | 7: P MRS |  |  |
|  |  | 99:EXJ Exemal 0 ( |  |  |
|  |  | ${ }^{11} 12 \mathrm{STR}+$ EXJ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | 16: STF+PM |  |  |
|  |  | 18:STF+PH |  |  |
|  |  |  |  |  |
|  |  | $\frac{\text { 21: STR }+ \text { RL+RN }}{22: S T T+R T+R L}$ |  |  |
|  |  | 23: STR+RT+RL |  |  |
|  |  | 25: STR+RT+RM 26: $S T F+R T+R L+R M$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | 30: RESEE <br> 31: STOP |  |  |
|  |  | 32: REX(Multi-speed set (16 levels) <br> 33: PO(In "external mode" and when PO |  |  |
|  |  | is "on", programmed operation mode is |  |  |
|  |  | 34: RES_E (When alarms occur, external reset become valid only when the alarm |  |  |
|  |  | (e) |  |  |
|  |  | cycle mode is chosen.) |  |  |


| $\begin{array}{l}\text { Parameter } \\ \text { number }\end{array}$ | Name | Setting range | Default value | User setting value |
| :---: | :---: | :---: | :---: | :---: |
| P. 80 | Multi-function terminal RL function election | 36: TRI(Triangle wave function) <br> $37: G P \_B P$ $38: C S$ ( Manual switch power frequency <br> signal ) <br> 39 : STF/STR +STOP <br> 40~43: reserve <br> 44: PID_OFF | 2 |  |
| P. 81 | Multiturction terminal RM M tunction | Same as P. 80 | 3 |  |
| P. 82 |  | Same as P . 80 | 4 |  |
| P.83 |  | Same as P.80 | 0 |  |
| P. 84 | Mutti-function terminal STR function | Same as P. 80 | 1 |  |
| P. 85 |  | Same as P. 40 | 5 |  |
| P. 86 | Mutit-Iunction terminal RES function | Same as P. 80 | 30 |  |
| P. 87 | Mutit-Function Control-Terminal Input | 0-511 | 0 |  |
| P. 88 | Mulifinetion Outuit Teminal | $0-15$ | 0 |  |
| P. 89 | Positiveneagive Loic | 0-10 | 0 |  |
| P.901 <br> .991 |  | O-4000 $0-40 \mathrm{~Hz}$ O9999 | ${ }^{0} 9$ |  |
| P. 92 | Frequency yimp 1 1B | 0-4007t, 999999 | 99999 |  |
| ${ }_{\text {P. } 29}$ |  |  | ${ }_{9}^{\text {99999999 }}$ |  |
| P.959 | Frequency ${ }^{\text {a }}$ P 3 3 | 0-400Hz, 9 99999 | ${ }_{\text {999999 }}$ |  |
| P.9.96 | Frequency Thump second 3 Brat | O-400-7z, 09999 | 99999 |  |
| ${ }_{\text {P. }{ }_{\text {P }} .98}$ |  | ${ }_{\text {O-400Hz }}^{0-100}$ | ${ }_{\substack{3 \\ 10 \% \\ \hline 18}}$ |  |
|  |  | 0: The minimum incement of run time is |  |  |
| P. 100 | Minutelsecond selection |  | 1 |  |
| P. 101 | Runtime of Section 1 in programmed | $0-60005$ | os |  |
| P. 102 | ${ }^{\text {Runtime of Section } 2 \text { in programmed }}$ Operation mode | 0.6000 s | 0 os |  |
| P. 103 | Rentime of Section 3 in programmed | 0.6000 s | os |  |
| P. 104 | Rentime of Sedition 4 in programmed | 0.6000 s | os |  |
| P. 105 | Rentime of section 5 in programmed | 0-6000s | os |  |
| P. 106 | Rentime of section 6 in programmed | 0-6000s | os |  |
| P. 107 | Runtime of Section 7 in programmed | 0-6000s | os |  |
| P. 108 | Rentime of Section 8 in programmed | 0-6000s | os |  |
| P. 110 | Operation panel monitoring selection |  | 1 |  |
| P. 111 | ${ }_{1}{ }_{1}$ Accelerationdeceleration time of section | 0-600910-6000s | os |  |
| P. 112 | ${ }_{2}^{\text {Accelerationdeeceleraion time of section }}$ | 0-60090-6000 | os |  |
| P. 113 | Aceateraiondeeceleraion time of | $0-600810-6000 \mathrm{~s}$ | 0 os |  |
| P. 114 | Acceleraiondeceleration time of | 0-60090-6000s | os |  |
| P. 115 | Acceleration/deceleration time of | $0-600080-6000 \mathrm{~s}$ | os |  |
| P. 116 | Acceleraiondeeceration time of | 0-6000 $0-6000 \mathrm{~s}$ | os |  |
| P. 117 | Acceleratio | $0.660050-60005$ | os |  |
| P. 118 | Accelerationdeeceleration time of | $0-60080$ O-6000s | os |  |
| ${ }^{\text {P. } 1119}$ | The dead dime of fowardreverse | ${ }_{\text {O-300s }}^{0-3005}$ | ${ }_{\text {os }}^{0}$ |  |
| ${ }^{\text {P. } 1212}$ | Oufuus iffala aray tine |  | ${ }_{0}^{0}$ |  |
| P. 122 | Cycle selection | 0-8 | 0 |  |
| P. 123 | Acceielaionddecoleration time settrg | 0,1 | 0 |  |
| P. 122 |  |  |  |  |
| P. 126 |  | Same as P.80 | 5 |  |
| P. 127 | (enter | Same as P. 80 | 8 |  |
| P. 128 |  | Same as P . 80 | 7 |  |
| P. 129 | Meltilituncion temmina RUN function | Same as P. 40 | 0 |  |
| P. 130 | Multifuncion teminal FUU10X X Unction | Same as P.40 | 2 |  |
| P. 131 | Frequency of section 1 | ${ }^{0}-400 \mathrm{~Hz}$ | $\mathrm{OHz}^{2}$ |  |
| ${ }_{\text {P. }}^{\text {P. } 132}$ | Frequencry of secion 2 | ${ }^{0-400+7}$ | ${ }_{\text {OHz }}^{\text {OHz }}$ |  |
| P. 134 | Freauency of section 4 | ${ }^{0-400+H z}$ | $\mathrm{OHz}^{\text {O }}$ |  |
| ${ }_{\text {P. }}^{\text {P. } 135}$ | Frequency of section 5 | ${ }_{0}^{0-400+7}$ | $\mathrm{OHz}_{\mathrm{OHz}}$ |  |
| P. 137 | Frequency of section 7 | ${ }^{0} 0-40 \mathrm{OHz}$ | OHz |  |
| ${ }^{\text {P. } 1338}$ | Freauencof of secion 8 | ${ }^{0.400 H^{2}}$ | ${ }^{\text {OHz }}$ |  |
| P. 140 | Votagag signal gain | ${ }_{0}^{0.1-200 \%}$ | 100\% |  |
| P. 141 | Votage signal bias direcion and | 0-11 | 0 |  |
| ${ }_{\text {P. } 142}^{\text {P }} 14$ | Speed 8 | ${ }^{0} 0-40 \mathrm{~Hz}$ \% | OHz |  |
| P. 144 | ${ }_{\text {Speed }} 10$ | 0-400Hz, 9 99999 | ${ }^{99999}$ |  |
| P. 145 <br> P. 146 | ${ }_{\text {Spoed } 11}^{\text {Speed } 12}$ |  | ${ }_{\text {999999 }}$ |  |
| ${ }^{\text {P. } 147}$ | Speed 13 | 0-400-7z |  |  |
| ${ }_{\text {P. } 1488}^{\text {P. } 149}$ | Speed 14 |  | ${ }^{\text {999999 }}$ |  |
| P. 150 | Restar mode selection | XXX1: Immediate freque | 0 |  |


| Parameter number | Name | Setting range | Default value | User selting value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Xxox: One eleathity |  |  |
|  |  | X $\times$ x1x: Everer starting |  |  |
| P. 150 | Restart mode selection | XoxX: No delection of ofation X1XX: The deatection of rotation | 0 |  |
|  |  | $\mathrm{X} 2 \mathrm{XX}: \mathrm{P} 78=0$, The direction of rotation;P78=1, 2 No direction of |  |  |
|  |  | (tataion |  |  |
| P. 151 | Zerospeed control tunction selection | 1: Control by oc oc (note 1 and 3 ) | 0 |  |
| P. 152 | Voltage instruction at zero-speed control | 0-30\% |  |  |
|  |  |  | $\frac{208(1) 6 W-55 k N)}{}$ |  |
|  |  |  |  |  |
| P. 153 | Commurication error handiling | 0: War and call o stop | 0 |  |
| P. 154 | Moobus communication data format |  | ${ }^{4}$ |  |
|  |  |  |  |  |
|  |  | 3: 1, 8, N, 2 (Modbus, RTU) |  |  |
|  |  | 5: 1, i, o, 1 (Modusus, RTU) |  |  |
| ${ }_{\text {P. } 155}^{\text {P. } 156}$ | Over-I-qued detection level |  | \%\% |  |
|  | Over-oraue edeeceion ime |  |  |  |
| P. 157 | function | 0-200 | 4 |  |
| P. 158 | Extemal terminal powere enable |  | 0 |  |
| P. 159 | Energy-saving control function |  | 0 |  |
| P. 160 | $\underset{\substack{\text { Stall prevenion operation level when } \\ \text { restat }}}{ }$ | 0-150\% | 100\% |  |
| P. 161 | restar | 0: TTe monitiorig voltage file displays | 0 |  |
|  |  | 1:The montitioigg ovolaye filidisisplas |  |  |
|  |  |  |  |  |
|  |  | 2: The monitoring voltage file displays the accumulation rate of temperature |  |  |
|  |  | 3: The monitioring volatae file displays |  |  |
|  |  | constant peassures ssisseme or he |  |  |
|  |  | 4: The monitoring voltage file displays the current feedback pressure of the |  |  |
|  |  | 5: The monitioing volige efle displys |  |  |
|  |  | 6: The monitoring voltage file displays |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | 8: The monitoring voltage file displays <br> the signal value ( mA ) of $4-5$ simulating |  |  |
|  |  | ind |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Teme |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | $\frac{\text { rate of motor }}{\text { 14-17:Reseres }}$ |  |  |
|  |  | 18: The mosintorno yologag file ilisplays |  |  |
|  |  | 19: External terminal input state (about |  |  |
|  |  |  |  |  |
|  |  | the sort of terminal, please refer to the able of the special monitor code in the |  |  |
|  |  | 21:Show wheatururantenteferive carier |  |  |
|  |  | 22: Sh: Resened the unrent target frequency |  |  |
| ${ }_{\text {P. } 162}^{\text {P. } 163}$ |  |  | 99999 |  |
|  | Oupiput ootage of ef midale fequency | O-100\% 0 O-40Hz, 99999 | ${ }_{99999}$ |  |
| ${ }^{\text {P. } 1645}$ |  | O-40072,99999 | 9999 |  |
| P. 166 | Middele frequency | $0-400+7,99999$ | 99999 |  |
| P. 167 | Outut voltage 4 for modal frequency | ${ }^{0.100 \%}$ |  |  |
| ${ }^{\text {P. } 1.689}$ |  | O-40072,99999 |  |  |
| P. 170 | PII function selection | 0: Plot tunction no-s.esected | - |  |
|  |  | P 225. The feedback value is <br> mined by the voltage of terminal |  |  |
|  |  | 2: The traget value is determined by |  |  |
|  |  | $P .225$. The feedback value is determined by the voltage of terminal |  |  |
| P. 171 | PID feedback control method stelection | 0:Negativ feeaback control | 0 |  |
|  |  |  |  |  |
|  |  | frequency will increase the feedback |  |  |
|  |  |  |  |  |
|  |  | feedback value minors the target value. |  |  |
|  |  | freauency will decrease the feedback |  |  |
| P. 172 | PID Proportion Gain | ${ }_{1} 11000$ |  |  |
| ${ }_{\text {P. }}^{\text {P. } 173}$ | ${ }_{\text {Plo }}^{\text {Pio inepration Gain }}$ | ${ }^{0}{ }^{0-1005}$ | ${ }_{\text {1s }}^{1 \text { ms }}$ |  |
| ${ }_{\text {P. } 175}^{\text {P176 }}$ | Abnormal deviaion level | ${ }_{\text {onel }}^{0-100 \%}$ | 308 |  |
| P. 177 | Exception handiling modeSleep detects deviation | 0.600s | 30 s |  |
|  |  | 1: Dococterate and stop | ${ }_{0}$ |  |
|  |  | ve to un when the ala |  |  |
|  |  | 0-100\% |  |  |


| Parameter number | Name | Setting range | Default value | User setting value |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { P. } 179}{\text { P } 180}$ | Sleep detects duration time | ${ }_{\text {O-255s }}^{0}$ | ${ }^{15}$ |  |
| ${ }_{\text {P. }}^{\text {P. } 180}$ | Revival evel | ${ }_{\text {a }}^{\text {O-100\% }}$ | ${ }_{\text {90\% }}^{\text {90\% }}$ |  |
| P. 182 | Integral upener Initit fequency | $0-120 \mathrm{~Hz}$ |  |  |
| P. 183 | Deceienarion pressure | $0-10 \mathrm{~Hz}$ | 0.5Hz |  |
| P. 184 | terminal discomnection handing |  | ${ }^{0}$ |  |
| ${ }_{\text {P. } 186}^{\text {P182 }}$ | SF-G model selection function | 0. 1 | ${ }^{0}$ |  |
| ${ }_{\text {P. } 188}$ | Sotumare fitimuare veesion |  |  |  |
| P. 189 | Factory setitig function | \%: The defaut value of trauency-related | 0,60Hz System) |  |
|  |  | 1: The defaut vauu or treauerov-riated | 1 150Hz System) |  |
| P. 190 | AM Output bias | ${ }_{0} 0-1400$ | ${ }^{0} \mathbf{0}$ ( OLe 4 4) |  |
| P. 192 | ${ }_{2}$ 2.5emminamam minimum input voltage | ${ }^{0.1400}$ |  |  |
| P. 193 | ${ }_{2}$ 2-5 terminal maximum input voltage | 0-10 | 0 |  |
| P. 194 |  | ${ }^{0-60 \mathrm{~Hz}}$ | OHz |  |
| P. 19 |  | $0-400 \mathrm{~Hz}$ | 50Hz60Hz (Note 2) |  |
| P. 196 |  | ${ }^{0 .-60 H z}$ | OHz |  |
| P. 197 |  | $0-400 \mathrm{~Hz}$ | 50Hz60Hz(Note 2) |  |
| P.198 |  | $0-20$ $0-20$ 0.20 | ${ }_{0}$ |  |
| P. 200 | Constant pressure system function | $0-14$ | 0 |  |
| P. 209 | Maximum frequency duration | $0.1 \sim_{10 \text { min }}$ | 5 min |  |
|  | nimum frequency duration |  |  |  |
| P. 213 | Accalarion ime ior siating the | 0.01-20s00.1-200s | $5{ }_{5}$ |  |
| P. 214 | Deceleration time fors sarining the commercial power supply feuueny | $0.01-2080.11-200 \mathrm{~s}$ | ${ }_{5}$ |  |
| ${ }_{\text {P. } 215}^{\text {P } 215}$ | Maximum feouercy | ${ }^{20-50 \mathrm{H} / 2}$ | ${ }^{50 \mathrm{~Hz}}$ |  |
|  | Motorus sutichoverere reemitted deviaion |  |  |  |
| P. 223 |  | ${ }^{0 .-100 \%}$ | 0\% |  |
| ${ }_{\text {P. } 2224}$ | Analog feedack kain pressure | or ${ }^{0-100 \%}$ | ${ }^{\text {100\% }}$ |  |
| P. 229 | Backias compensation function | $0-1$ | 0 |  |
| P. 230 | The backish compensation | 0-400Hz | 1 Hz |  |
| P. 231 | ack | ${ }^{0.360} \mathrm{~s}$ | ${ }^{0.55}$ |  |
| P.232 | The back lash compensation | 0-400H | 1 Hz |  |
| P. 233 | The backush compenssation | 0-360 s | ${ }^{0.55}$ |  |
| P. 234 | Triangular wave function selection | O: None. | 0 |  |
|  |  | li: Extemal R R is turno ion, trangular |  |  |
|  |  |  |  |  |
| P. 235 | Maximum amplitude | 0-25\% | 10\% |  |
| P. 236 |  | 0-50\% | 10\% |  |
| P. 237 | Ampoitude compensation tor acceleration | 0.50\% | 10\% |  |
| ${ }_{\text {P. } 2,238}^{\text {P. } 23}$ | Ampliude acceleration Ame | ${ }^{\text {o-360sol-300 }}$ | ${ }^{105}$ |  |
| P. 239 | Auxiliay frequency funcion sslection |  | 0 |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Ieamiliay freuuency given by the 2-5 |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| P. 242 | DC injection brak starting selection | 1: DC brake injection function is selected before starting. | 0 |  |
| P.243 | DC injection brake time beforo stating | 0.60 s |  |  |
|  |  |  | 4\% (7.5kW or |  |
| P. 244 | DC inject starting | 0-30\% | 2\% ( $11 \mathrm{~kW} \sim 55 \mathrm{~kW}$ ) |  |
| P. 245 | Coooling tan operation selection | 0-3,10-13 |  |  |
|  | Modulution ceefficient |  |  |  |
| ${ }_{\text {P. } 248}^{\text {P. } 248}$ | MC sutithover ineliock time | ${ }^{0.1}$ | ${ }_{\text {0.5s }}^{\text {15 }}$ |  |
| P. 249 | Automatic switchover frequency from inverter to commercial power supply | 0-60H2,99999 | 99999 |  |
| P. 250 | Automatic switchover frequency range from commercial power supply to | 0-10Hz,99999 | 9999 |  |
| P. 251 | Injection molding machine mode election | O: norifiefion modeiling machine | 0 |  |
|  |  | $\frac{1}{1}$ only the fow channeli s vald |  |  |
|  |  | 3: l (low chenanel and and stess |  |  |
|  |  |  |  |  |
|  | Flow chanel weighted coefflicient | ${ }^{\text {absolue }}$ - value |  |  |
|  | Pressure channel weighted coefticient | 0-100\% | 100\% |  |
| ${ }_{\text {P. } 259}^{\text {P. } 25}$ | Corner freauency | ${ }_{\text {or }}^{0-1}$ | ${ }_{1}^{\mathrm{OHz}}$ |  |
| P. 260 | Over forcue detection selection | : The OL2 alarm is not reported after | 1 |  |
|  |  | 1: Trive ooeps samming ing reorted after over |  |  |
|  | Mantenance alarm time |  | 0 |  |
| P. 281 | hout | 0: No Phase Failure Protection |  |  |





## ${ }^{\text {11) }}$ Parameter setting process

When P.floo: chart for switching the operation mode using DU01 operation pane::

When P. 79

> The flow chart for switching the working mode using DU01 operation panel:


- Operation flow charts for monitoring mode with DUO



Operation flow charts for frequency setting mode with DU01:
Use $\triangle$ or ${ }^{-}$

|  |  |
| :---: | :---: |
|  | will |
|  | Stherm |
|  |  |

Press the MODE key to enter the frequency setting mode :


- Operation flow charts for parameter setting mode with DU01.


12) Others


[^0]:    Note1 1 : When oonnecting confar
    damaging the inverter.

